Stiftung Tierärztliche Hochschule Hannover University of Veterinary Medicine Hannover, Foundation

Institute for Animal Nutrition

High dietary rye levels combined with reduced grinding intensity – an effective concept against higher Salmonella prevalence in pork production

J. Kamphues, B. Chuppawa, V. Wilke, C. B. Hartung, C. Visscher, A. von Felde¹⁾ and R. Grone¹⁾

Institute for Animal Nutrition at the University of Veterinary Medicine Hannover, Germany ¹⁾ KWS LOCHOW GMBH, Bergen, Germany

- International Rye Feed Research Meeting, 25th February 2021 -

Salmonella prevalence in pork production – efforts to maintain a high standard of consumer protection

- Testing of antibody titers in meat juice of slaughtered pigs
 - \rightarrow category I/ II/ III (very low/ moderate/ high levels)
- Consequences for the pig producers regarding
 - \rightarrow time of slaughtering to minimize risks for contamination
- Implementation of measures (veterinary administration)

 \rightarrow including dietary measures at farm level

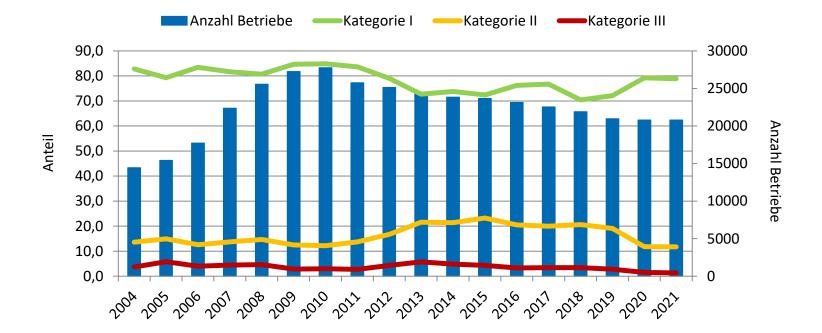


Figure: Results of Salmonella monitoring (meat juice) in slaughtered pigs of Germany (QS-program; data form SPEMANN, 01.02.2021)

Besides optimization of the diet there are lots of hygiene measures need to be respected:

- Salmonella contamination of pigs entering the fattening unit
- Spreading of Salmonella stimulated by "stress"
- Intestinal dysbiosis due to antibiotic treatment
- Cleaning and disinfection between cycles
- Pest control/ rats/ mice/ birds shedding Salmonella
- Dust within the technical equipment for climatization

The diet is only one part within the puzzle "Salmonella"

Salmonella prevalence in pork production in Europe and four different "dietary concepts"against higher values

 Effects predominantly within the stomach/ small intestine
 → Salmonella entrance/ Salmonella adherence

- Effects within the cranial part, but also in the hindgut
 - → Salmonella entrance/ Salmonella elimination

• FERMENTED FEEDS/ DIETS

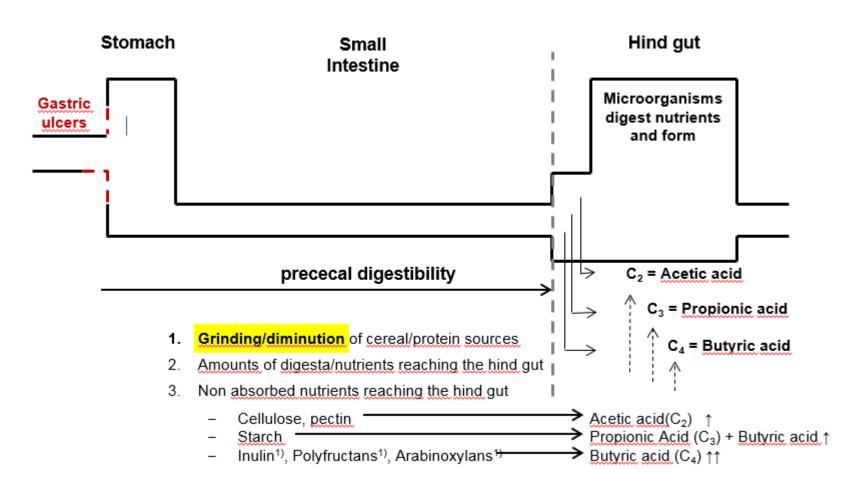
- `controlled fermentation`
- high shares of silage like corn cob mix (CCM) a. s. o.

 COARSER CEREAL GRINDING (share of rough particles 1)
 part of cereals (roller mill)
 resign of pelleting/ granulation

• FEED ADDITIVES

- organic acids (formic acid...)

- probiotics (lactic acid producers)
- prebiotics (lactulose)


- SPECIFIC FEED MATERIALS
 - `resistant starch` (raw potato!)
 - RYE (fructans/ arabinoxylans)
 - Cereal by-products (bran...)

enhanced efficacy when combinations are implemented

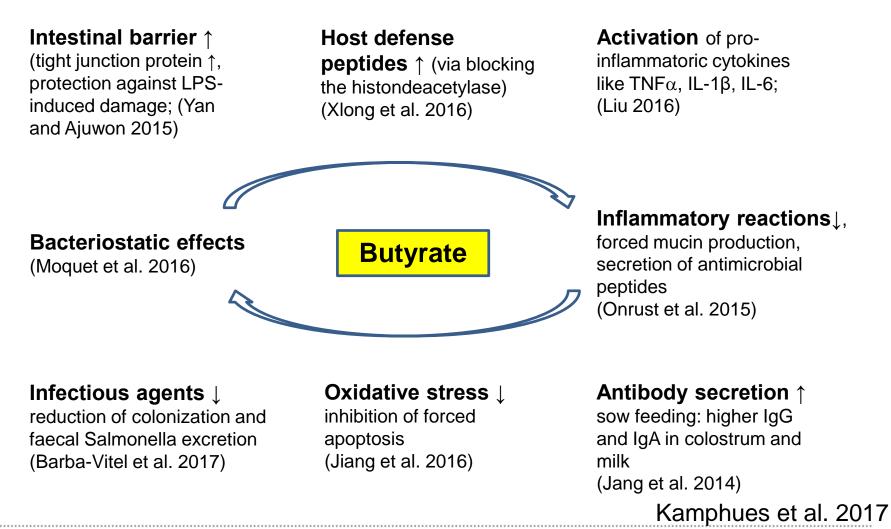
KAMPHUES 2020

The Alimentary Tract of Pigs – a Model

Kamphues et al. 2017

1) specifically high amounts in rye

What are the main reasons for an increased butyric acid formation in the hindgut of pigs fed increased dietary rye levels? (KAMPHUES et al. 2019)



- Due to a slightly lower pc digestibility of starch increasing amounts of rye will reach the hindgut (~ 25 g/kg rye)
- Due to a very low pc digestibility most of the native **fructans** (30 60 g/kg rye) will reach the end of the small intestine/the caecum
- 3. Due to a very low pc digestibility most of the arabinoxylans(80 90 g/kg rye) will enter the hindgut, especially the caecum of pigs

→ 1.6 - 1.8 higher amounts of organic substances (than in wheat) as well as distinct non-starch-polysaccharides will favour the formation of butyrate in the hindgut!

Butyrate: diverse relationships to the immunological capacity of individuals, selected recent literature

LAWHON et al. 2002: (Molecular Microbiology 46, 1451 – 1464)

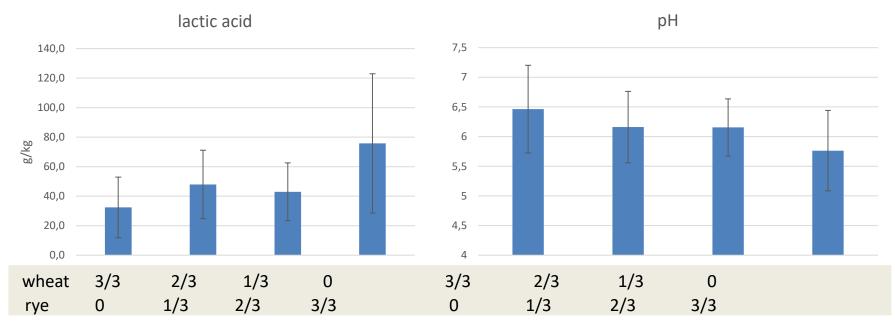
*"*It is likely then that Salmonella can use the SCFA conditions of the mammalian intestinal tract as **a signal for invasion**.

- Low total SCFAs (~ 30 mmol) with a predominance of acetate induce invasion

whereas

- high total SCFAs (~ 200 mmol) with greater

concentrations of **propionate and butyrate** suppress it."


- \rightarrow in the distal small intestine: Acetate $\uparrow \rightarrow$ Invasion $\uparrow \uparrow \uparrow \uparrow$
- \rightarrow in the cecum/colon: Propionate, Butyrate $\Uparrow \rightarrow$ Invasion $\Downarrow\Downarrow\Downarrow$

Rye – effects within the small intestine

Is there a risk for a too high formation of lactic acid in the small intestine in young pigs fed high rye diets?

 \implies lactic acid $\widehat{\mathbf{1}}$: pH $\overline{\mathbf{1}}$: activity of amylase?

Lactic acid contents and pH values in the small intestine digesta of young pigs fed diets with increasing shares of rye, substituting wheat (WILKE 2020).

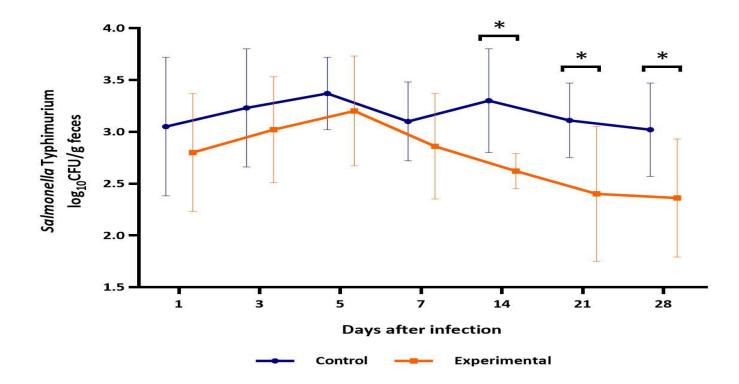
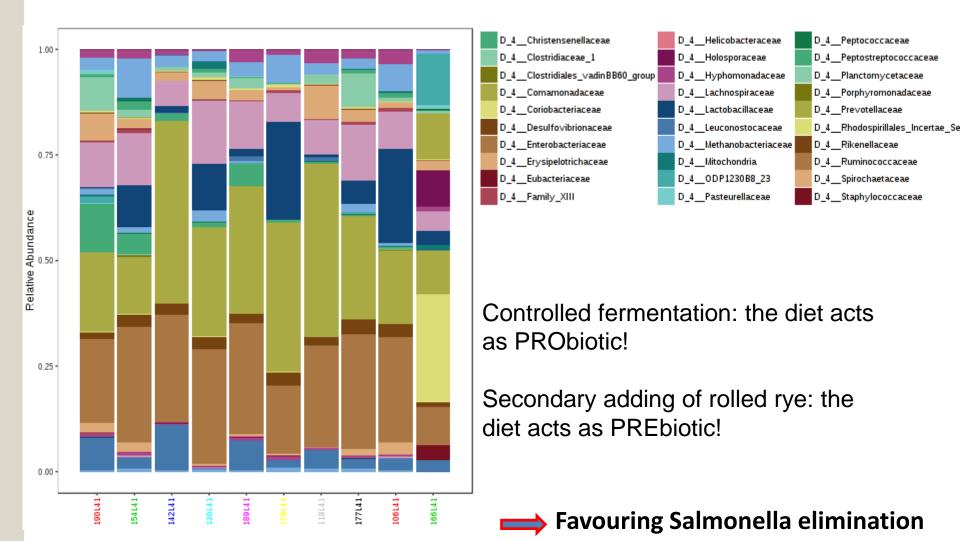


Figure: Counts of Salmonella (\log_{10} CFU/g fecal sample) of piglets fed different diets after an experimental oral infection with S. Typhimurium. Means of bacterial counts between the control (69 % wheat) and experimetal (69 % rye) groups differed significantly (*p < 0.05; Chuppawa et al. 2020)


KWS

Salmonella prevalence (%) in pigs (n= 117455) of 9 farms

23 02 2021

The development of Salmonella prevalence in slaughtered pigs after dietary changes in 2017 - ≥ 40 % rye and coarse grinding – in the field study in Germany (KWS / von Felde 2020) The microbiom of **colonal** contents of young pigs fed a fermented diet, after fermentation rolled rye was added to increase the particles' size in the diet (BUNTE et al. 2019)

STIFTUN

It is not a "dream", but there are real chances to overcome the Salmonella story in pork production by "dietary measures":

- "controlled fermentation" of a rye based final liquid diet
 - → high lactic acid concentration (> 5% of DM!) plus lactic acid producers (10¹⁰/g)

ightarrow favouring Salmonella elimination before / at the entrance

- add to the fermented part of the liquid diet not only protein feeds
 - \rightarrow ~ 15% of rye ground/ cracked in a roller mill only
 - \rightarrow marked effects on hind gut microbiota (Bifido-bacteria \mathbf{f})
- minimized use of antimicrobials in young pigs
 → stabilized intestinal microbiota preventing settlement
 → reduced numbers of "seeders" within groups
- in future times: effective concepts for the piglet producing units!
 → minimizing the infection / contamination of piglets
 - \rightarrow protection of the fattening units instead of treatment

Summary / conclusions

- Science based concept regarding the specific properties of rye due to its typical NSPs favouring butyric acid formation
- Field studies confirm the expectations regarding use of rye and lower grinding intensity (→ decrease of Salmonella antibody titers)
- Experimental studies including artificial infection have demonstrated significant effects of rye at "challenge conditions"
- Combining the ideas of specific feed materials like rye and a more coarse diet as well as of fermentation the best!
- Favouring the diversity and activity of hindgut microbiota is desired – inspite of slightly increased energy losses