Control of groundkeepers from CONVISO® **SMART** ALS-tolerant sugarbeet in following crops

79th IIRB Congress, 27-28 February 2024, Brussels (B)

Christina Wellhausen, Sébastien Deraeve, Boglarka Barati & Martin Wegener

Introduction | Aims

Groundkeeper management is an integral part of CONVISO® SMART Stewardship. If they are not destroyed by frost, remainings of ALS-tolerant sugarbeet can produce viable

KWS

seeds in the following crop, potentially resulting in the spread of ALS-tolerant weed beet. To evaluate groundkeeper control with different herbicide active ingredients, trials were conducted across several European countries.

Trial Setup

- Trials were conducted in 4 countries (Spain, Italy, Czech) Republic, Poland) across 9 locations, in small plot trials with 2 replications.
- Groundkeeper simulation:
 - a) transplanted sugarbeet seedlings (stecks).
 - b) sown sugarbeet.
- A main crop (cereals & corn) was established in trials in CZ and PL. Application timing: pre-emergence, BBCH 12-18, BBCH 39-51. Assessment: 1 week after application (WAA), 2-4 WAA, 6-8 WAA.

Cereal Herbicides

Tab. 1: Efficacy (%) of different cereal herbicide active ingredients against

the field after harvest, which can flower and potentially set seed in the following crop.

Fig. 1: Schematic setup of groundkeeper trials. Groundkeeper plants (shown in orange) are sown or transplanted into main crop (cereals or corn) and treated with different herbicides.

Corn Herbicides

Tab. 2: Efficacy (%) of different corn herbicide active ingredients against

ALS-tolerant groundkeepers. Herbicide application conducted at BBCH 12-18 of groundkeeper plants.

Active Ingredient	HRAC	ES		IT	CZ	PL	
		2022	2023				
2,4 D	4	60	83	99			
MCPA	4	65		92	75		
2,4 D + MCPA	4	73		99			
MCPA+ MCPP + dichlorprop-P	4			99	93		
MCPA+ MCPP + dicamba	4					94	
МСРР	4			94			
Dicamba + MCPA	4			94		94	
Dicamba	4	88	70	76		98	į
Fluroxypyr + clopyralid + MCPA	4			98	95		ò
Fluroxypyr	4	50		81		97	Ĺ
Aminopyralid + florasulam	4 + 2	78	22				

ALS-tolerant groundkeepers. Herbicide application conducted at BBCH 12-18 of groundkeeper plants.

Active ingredient	HRAC	ES		IT	CZ	PL
		2022	2023			
Tembotrione	27	75	85	100	100	100
Mesotrione	27	95	17	100		
Sulcotrione	27	90	28			
Mesotrione + dicamba	27 + 4			100		
Isoxaflutole + terbuthylazine	27 + 5					100
Pyridate + mesotrione	27 + 6			99		
Isoxaflutole + thiencarbazone-m.	27 + 2	90				94
Mesotrione + terbuthylazine + s- metolachlor	27 + 5 + 15			80		100
Fluroxypyr	4			81	80	94
Dicamba	4	88	70	84	66	75
Flufenacet + terbuthylazine	15 + 5				100	

Conclusions & Recommendations

- Losses during harvest and loading should be avoided.
- If frost is expected, superficial tillage is recommended. In mild winters, intensive tillage (e.g. ploughing) is beneficial.
- A competitive following crop will support groundkeeper suppression.

CAPALS

0-85% effica

85% efficac

COPN

- Effective herbicide active ingredients in corn are more widely available and include: triketones (HRAC 27), auxin mimics (HRAC 4) and triazines (HRAC 5).
 - Combinations of different actives can provide higher efficacy.

- Only auxin mimics (HRAC group 4) were effective against groundkeepers.
- Combinations of different actives (e.g. 2,4 D, MCPA, dicamba) show higher efficacy.
- Groundkeeper plants need to be actively growing with sufficient leaf area.

Availability of effective herbicides is limited – actives from HRAC group 15 or 6 only provide medium efficacy (results not shown).

KWS

- Mechanical control pre-sowing is recommended.
- Application of glyphosate pre-sowing is possible if groundkeepers are actively growing.

Christina Wellhausen | KWS SAAT SE & Co. KGaA christina.wellhausen@kws.com

www.convisosmart.com

